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Abstract 

This study investigates the dynamic effects of environmental sustainability determinants on the ecological 

footprint in selected Sub-Saharan African countries covering the period of 1970 to 2023. Using the Cross-

Sectionally Augmented Autoregressive Distributed Lag (CS-ARDL) model. Cross-sectional dependency 

and slope homogeneity tests established significant interdependence and heterogeneity of the data. Cross-

sectional Augmented Dickey-Fuller (CADF) and Cross-sectional Im, Pesaran, and Shin (CIPS) 

stationarity test reveals mixture of integration orders.  Also, Westerlund (2007) cointegration test confirms 

long-run relationship among the variables. The CS-ARDL estimation results reveal both long-run and 

short-run dynamics among the variables. In the short run, economic growth, urbanization, and non-

renewable energy consumption have strong positive impacts on EF, while renewable energy has a 

marginal effect likely due to transitional inefficiencies. The error correction term confirms a moderate 

adjustment speed toward equilibrium at 27.5% annually. In the long run, GDP has a significant positive 

effect, with the signs of GDP² (negative) and GDP³ (positive) confirming an N-shaped EKC.  Urbanization 

and natural resource depletion also significantly worsen environmental degradation. Renewable energy 

consumption contributes to reducing EF, whereas non-renewable energy consumption slightly increases 

it. Robustness checks using Augmented Mean Group (AMG) and Common Correlated Effects Mean Group 

(CCEMG) estimators confirm these findings. The study recommends that policymakers promote renewable 

energy adoption, implement sustainable urban planning, and enforce stricter environmental regulations 

to curb ecological degradation in these countries. Lastly, policymakers should recognize the non-linear 

Environmental Kuznets Curve (EKC) patterns by promoting green growth strategies that decouple 

economic expansion from environmental degradation. 

 

Keywords: Effect of Environmental, Sustainability Determinats, Ecological Footprint 
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1.0  Introduction 

Over the past few decades, the world has witnessed substantial economic growth, 

improvements in social welfare, and reductions in energy poverty. However, these 

achievements have come at a steep environmental cost, particularly due to increased 

industrialization and unsustainable resource consumption (Hassan et al., 2023). The ecological 

footprint (EF) a measure that quantifies the environmental demand of human activities has 

emerged as a critical indicator of environmental sustainability (Yu et al., 2024). Many regions 

now face ecological deficits, where the EF exceeds local biocapacity, indicating unsustainable 

environmental practices and resource depletion (Global Footprint Network, 2022). 
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Sub-Saharan Africa (SSA) presents a paradox. Although the region contributed only 3% of 

global CO₂ emissions in 2022 and 4% in 2023, it experiences disproportionately severe 

environmental consequences (Al-Jazeera, 2023). Countries such as Nigeria, Ghana, Kenya, 

and South Africa exhibit substantial ecological deficits ranging from -77% to -180% as their 

resource consumption exceeds regenerative capacity (Global Footprint Network, 2023). 

Moreover, the region's biocapacity has sharply declined from 4.25 global hectares (gha) per 

person in 1961 to just 0.99 gha per person in 2022, while the ecological footprint has steadily 

risen to 1.12 gha per person (Shi et al., 2024). This imbalance is driven by urbanization, natural 

resource depletion, industrial expansion, and increasing reliance on non-renewable energy 

sources (Akadiri et al., 2022; Ssekibaala & Kasule, 2023). 

Despite being endowed with abundant renewable energy potential, SSA continues to rely 

heavily on fossil fuels, intensifying its ecological stress (Faroukia & Aissaoui, 2024). While 

several studies have assessed environmental degradation using carbon emissions (Adebayo et 

al., 2021; Akam et al., 2021), they often overlook the ecological footprint, which provides a 

more comprehensive view of environmental impact (Joof et al., 2024). Furthermore, the 

Environmental Kuznets Curve (EKC) hypothesis which posits an inverted-U relationship 

between economic growth and environmental degradation has been widely tested using CO₂ 

emissions, but its validity using EF remains underexplored in SSA (Sampene et al., 2022; 

Sarkodie, 2021; Shen & Yue, 2023). Motivated by the urgent need for sustainable development 

strategies tailored to SSA’s unique ecological challenges, this study aims to evaluate the 

dynamic effects of environmental sustainability determinants (GDP, urbanization, natural 

resource depletion, renewable and non-renewable energy consumption) on the ecological 

footprint in selected SSA countries with high ecological deficits. Additionally, the study 

investigates whether the EKC hypothesis holds when EF is used as the environmental 

indicator. The paperr is organized as follows: Section 2 reviews the relevant literature. Section 

3 presents the theoretical framework and methodology. Section 4 discusses the empirical 

results and analysis. Section 5 concludes with key policy implications. 

2.0 Literature Review 

2.1 Theoretical Framework 

The theoretical foundation of this study rests on the Environmental Kuznets Curve (EKC). It 

addresses the pressing issue of environmental degradation threatening the sustainability and 

prosperity of economies at various development stages globally. The challenge lies in 

mitigating this environmental decline without impeding economic progress (Eregha et al., 

2023). The Kuznets Curve hypothesis offers a promising theoretical perspective. It suggests 

that a reduction in environmental pressure can be achieved at a certain level of economic 

development. The original Kuznets Curve model, proposed by Kuznets (1955), presents an 

inverted U-shaped relationship between economic income and inequality. In this context, 

environmental damage is measured through indicators such as ecological footprint. Research 

examining the EKC hypothesis shares common traits in terms of data and methods. In essence, 

despite employing various analysis methods and techniques for the EKC, nearly all of them 

adhere to a similar model structure. Panel data is frequently employed in such research, and 



International Journal of Economics & Development Policy (IJEDP), 

Vol. 8, No. 1 – June 2025; Ali et al;; Pg. 117 - 142 

 

 
119 

the typical theoretical representation of the EKC model is often outlined as follows (Grossman 

& Krueger, 1991; Stern, 2004). 

The Environmental Kuznets Curve (EKC) model exhibits different shapes depending on the 

signs of its various parameters related to income. When all three parameters, β1, β2, and β3, 

are zero (β1, β2, β3 = 0), the relationship between environmental degradation and income is 

either flat or non-existent. When β1 is positive and β2 and β3 are zero (β1 > 0, β2 & β3=0), 

the connection is monotonically growing, suggesting that environmental deterioration 

deteriorates in tandem with economic growth. In contrast, the connection is monotonically 

lowering if β1 is negative and β2 and β3 are zero (β1 < 0, β2 & β3=0), suggesting that 

environmental degradation reduces as income increases. The EKC assumes the traditional 

inverted U-shape when β1 is positive, β2 is negative, and β3 is zero (β1 > 0, β2 < 0, β3 = 0). 

One can detect a U-shaped association (β1 < 0 and β2 > 0 and β3 = 0) where β1 is negative, 

β2 is positive, and β3 is zero. This study focuses on the EKC's cubic or N-shaped link between 

income and environmental deterioration when β1 is positive, β2 is negative, and β3 is positive 

(β1 > 0 and β2 < 0 and β3 > 0). Ultimately, when examining the relationship between economic 

growth and environmental deterioration, an inverse relationship in the form of a "N" emerges 

if β1 is negative, β2 is positive, and β3 is negative (β1 < 0, β2 >0, β3 < 0). The EKC model's 

different forms shed light on the intricate relationship between environmental sustainability 

and income (Grossman & Krueger, 1991; Stern, 2004). 

Building on this foundation, numerous studies have explored the quadratic relationship 

between pollution and income, taking into account various pollution indicators and 

environmental degradation measures. The majority of the research on the Environmental 

Kuznets Curve (EKC) focuses on using GDP or GDP per capita, and their growth rates, to 

assess the impact of income on indicators like CO2 emissions and greenhouse gas emissions, 

primarily related to air pollution. However, these measures often do not include water and soil 

pollution. Some researchers like Akam et al., (2021); Alqaralleh, (2020); Jian et al., (2022); 

Sampene et al., (2022); Sarkodie, (2021); Shen and Yue (2023) among others have broadened 

the horizons by adopting the ecological footprint as a more comprehensive gauge of 

environmental deterioration. The ecological footprint, initially proposed by Wackernagel and 

Rees (1996), considers various factors, including carbon footprint, ocean usage, built-up land, 

grazing land, cropland, and forest land. It quantifies the total natural resources consumed by a 

population and accounts for the land and water required to sustain human activities and manage 

waste. This broader approach provides a more encompassing view of the environmental impact 

of economic development (Lin et al., 2018). 

2.2 Empirical Review 

Recent studies have extensively examined the relationship between energy consumption, 

economic growth, and environmental sustainability, employing diverse econometric 

methodologies across different regions. Adebayo et al. (2022) investigated the effects of 

renewable and non-renewable energy, economic complexity, and technological innovation on 

CO₂ emissions, highlighting renewable energy's positive role in environmental quality. 

Similarly, Adebayo et al. (2021) explored structural change impacts on CO₂ emissions in 
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Turkey, revealing that while structural change improves ecological quality, fossil fuel reliance 

remains unsustainable. In Nigeria, Adekunle et al. (2022) found a positive link between 

economic growth, energy use, and carbon emissions, with unidirectional causality from 

emissions to growth. Research in Africa and the Middle East further enriches this discourse. 

Awodumi and Adewuyi (2020) analyzed oil-producing African nations, emphasizing the 

complex relationship between energy consumption and environmental sustainability. Bargaoui 

(2021) and Hanif (2018) expanded on these dynamics in the MENA region and Sub-Saharan 

Africa, respectively, with Hanif confirming the Environmental Kuznets Curve (EKC) and 

underscoring renewable energy’s mitigating effects. Inglesi-Lotz and Dogan (2018) reinforced 

these findings, showing that non-renewable energy exacerbates pollution, while renewables 

reduce it in Sub-Saharan Africa’s largest electricity producers. Bekele et al. (2024) analyzed 

30 Sub-Saharan African countries and found a significant positive long-run relationship 

between renewable energy consumption and environmental sustainability. Keho (2023) found 

that urbanization significantly increases the ecological footprint in Côte d’Ivoire, highlighting 

the need for green urban development. 

Globally, Asıcı and Acar (2016) examined ecological footprint drivers across 116 countries, 

noting variations based on production and import structures. Pata (2021) focused on BRIC 

nations, revealing that renewable energy reduces environmental pressure in China and Brazil 

but not in Russia and India. Saidi and Omri (2020) found nuanced effects of nuclear and 

renewable energy in OECD countries, while Sowah and Kirikkaleli (2022) highlighted 

urbanization and trade openness as key factors in environmental sustainability. Uddin et al. 

(2023) differentiated policy implications for developed and developing nations, stressing 

financial development and energy consumption’s divergent impacts. The EKC hypothesis 

remains a recurring theme. Sharif et al. (2020) validated it in Turkey, demonstrating that 

renewable energy reduces ecological footprint, whereas economic growth and non-renewable 

energy increase it. Nathaniel et al. (2019) found urbanization and growth escalate ecological 

footprint, while trade degrades environmental quality. Javed et al. (2023) identified green 

technology innovation and environmental taxes as key reducers of ecological footprint in Italy. 

Radmehr et al. (2022) reinforced these insights in G7 countries, showing bidirectional links 

between GDP, renewable energy, and ecological footprint. 

Further regional analyses by Sampene et al. (2022) in South Asia confirmed the EKC, with 

natural resource rents and biocapacity increasing ecological footprint, while renewables 

mitigated it. Salim et al. (2017) linked urbanization and non-renewable energy to rising 

emissions in Asia, whereas Ehigiamusoe et al. (2022) identified non-linear financial 

development and urbanization effects in Africa. Usman et al. (2021) found financial 

development and renewables reduce ecological footprint in high-emitting nations, contrasting 

with growth and fossil fuels’ adverse effects. Finally, country-specific studies, such as Gupta 

et al. (2022) in Bangladesh and Samargandi (2021) in Saudi Arabia, highlighted urbanization, 

energy use, and oil extraction’s critical roles in shaping ecological outcomes.  

Empirical studies have consistently demonstrated that the relationship between energy 

consumption, economic growth, and environmental sustainability is complex and context-
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specific. Evidence from both global and regional perspectives particularly in Sub-Saharan 

Africa (SSA), the Middle East, and Asia reveals that non-renewable energy consumption and 

urbanization tend to exacerbate environmental degradation, while renewable energy and green 

innovations contribute positively to ecological outcomes. The Environmental Kuznets Curve 

(EKC) hypothesis is frequently validated, suggesting an inverted U-shaped relationship 

between economic growth and environmental degradation. Moreover, urbanization, natural 

resource depletion, and financial development show heterogeneous impacts depending on 

regional and structural characteristics. 

Building on this existing body of literature, this paper contributes to the environmental 

sustainability discourse by evaluating the dynamic effects of key determinants—GDP, 

urbanization, natural resource depletion, renewable and non-renewable energy consumption—

on the ecological footprint in selected Sub-Saharan African countries with high ecological 

deficits. Unlike previous studies that often treat SSA as a homogenous group or focus on 

individual countries, this study targets the most ecologically vulnerable SSA nations, offering 

a more nuanced understanding of sustainability challenges in the region. By employing 

dynamic panel techniques, the study captures both short- and long-run effects, providing robust 

policy-relevant insights into how sustainable development goals can be advanced in high-

deficit SSA contexts. 

3.0 Methodology 

3.1  Model Specification 

Based on the literature reviewed following Grossman and Krueger, (1991) and Stern, (2004), 

the theoretical specification of the EKC model is described as: 

 2 3

1 2 3 4it it it it it it itEI Y Y Y Z            (1) 

In the equation 2, 'EI' stands for environmental metrics, 'αit' represents the constant, 'yit,' 'y
2

it,' 

and 'y3
it' symbolize income levels, squared income levels, and cubed income levels, 

respectively. 'β1-k' denotes the estimated coefficients in the regression, 'zit' includes other 

pertinent indicators for the model, 'i' serves as a spatial identifier (country), 't' represents the 

temporal marker (year), and 'εit' signifies random noise for every country over time.  

Following the standard EKC hypothesis, the model specification is: 

 2 3

1 2 3 4it it it it it it itEF GDP GDP GDP Z            (2) 

In the equation, 'yit' represents environmental metrics, 'αit' symbolizes the constant, 'GDPit,' 

'GDPit2,' and 'GDPit3' stand for gross domestic product, squared of gross domestic product, 

and cubed of gross domestic product, respectively. 'β1-k' signifies the coefficient estimates in 

the regression, and 'Zit' encompasses other relevant model indicators namely: urbanization, 

natural resources depletion, renewable and nonrenewable energy consumption. Furthermore, 

in the extensive body of literature regarding the Environmental Kuznets Curve (EKC), 

Balaguer and Cantavella (2018) emphasize the ongoing scrutiny and debate surrounding the 
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accuracy and reliability of income coefficients. Consequently, this study will improve the 

precision of these estimates by introducing new variables and refining the model specifications. 

Hence, this study aims to investigate the dynamic impact of urbanization, natural resources 

depletion, renewable and nonrenewable energy consumption on ecological footprint in 

selected Sub-Saharan African countries for the period spanning from 1970 to 2023, building 

upon the work of Adebayo and Rjoub (2021); Adebayo et al., (2022); Danish et al., (2019); 

Rafque et al., (2021); Sampene et al., (2022), and Shen and Yue (2023) with some 

modifications. The model functional specification is given below: 

  2 3, , , , ,  ,EF f GDP GDP GDP NR URB REC NREC  (3) 

The econometric model for functional specification is given as:  

 

2 3

0 1 2 3

4 5 6 7    

it it it

it it it it it

EFit RGDP RGDP GDP

URB NR REC NREC

   

    

   

    
 (4) 

Where: 

The dependent variable in this study is the Ecological Footprint (EF). while the independent 

variables include Gross Domestic Product per capita (GDP), the squared (GDP²), and cubed 

(GDP³) terms of GDP per capita, Urbanization (URB), Natural Resource Depletion (NR), 

Renewable Energy Consumption (REC), and Non-Renewable Energy Consumption (NREC). 

The error term (ε) represents the stochastic disturbance, i denotes the cross-sectional unit 

(country), and t indicates the time dimension (year). All variables were transformed into their 

natural logarithmic forms to achieve linearity and stabilize variance, in line with the 

approaches adopted by Khan et al. (2020), Ushie and Aderinto (2021), and Shen and Yue 

(2023). Building on the methodological frameworks of Rafique et al. (2021), Sampene et al. 

(2022), and Shen and Yue (2023), this study employs the Cross-Sectionally Augmented 

Autoregressive Distributed Lag (CS-ARDL) model. The model specification for Equation (4) 

is expressed as follows: 
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 (5) 

yit is the environmental indicator that is Ecological Footprint (EF). xit is the same 7×1 vector 

of explanatory variables as described above. (e.g., GDP, GDP square, GDP cube, URB, NR, 

REC and NREC), all in their natural logarithmic forms. iy  and ix  tare the cross-sectional 

averages of the explanatory variables and the dependent variable, respectively. '

i  captures the 

long-term equilibrium relationship between xit and yit. 
'

i  and ζ'i address cross-sectional 

dependence by incorporating the cross-sectional averages. ∅ij and 
'

ij  represent the short-run 

dynamics and εit is the error term. 
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3.2 Method of Data Collection 

This study relies on secondary data comprising annual observations from ten Sub-Saharan 

African countries with the highest ecological deficits, namely: Ethiopia, Burkina Faso, Ghana, 

Zimbabwe, Nigeria, Benin, Gambia, Kenya, Rwanda and South Africa, each of which exhibits 

a unique blend of environmental dynamics and socio-economic characteristics. The study will 

encompass the period from 1970 to 2023.  

3.3 Variable Measurement/ Sources 

The study employs several key variables to analyze their impact on ecological sustainability. 

The dependent variable, Ecological Footprint (EF), is measured as ecological footprint per 

capita in global hectares (gha/person), sourced from the Global Footprint Network (GFN). This 

variable is widely used in literature, as evidenced by studies such as Shen and Yue (2023) and 

Sampene et al. (2022). The independent variables include Gross Domestic Product per capita 

(GDP), measured as real GDP per capita in constant 2015 US$, obtained from the World Bank. 

This metric is supported by multiple studies, including Nathaniel (2021) and Ansari et al. 

(2020). Another independent variable, Urbanization (URB), is measured as the urban 

population percentage of the total population, also sourced from the World Bank, with 

references to Nathaniel (2021) and Rafque et al. (2021). Additional independent variables 

include Natural Resource (NR), measured as natural resource rents (% of GDP) from the World 

Bank, cited in studies like Sampene et al. (2022) and Ahmad et al. (2022). Renewable Energy 

Consumption (REC) is measured as the percentage of renewable energy in total energy 

consumption (in gigajoules per capita), sourced from the International Energy Agency (IEA) 

and referenced in works such as Adebayo et al. (2022) and Pata et al. (2021). Conversely, 

Nonrenewable Energy Consumption (NREC) is measured as the percentage of non-renewable 

energy in total final energy consumption (in gigajoules per capita), also from the IEA, with 

support from studies like Neagu (2020) and Zafar et al. (2019).  

3.4 Techniques of Estimation 

The choice of estimation techniques in this study is justified by the presence of cross-sectional 

dependence and slope heterogeneity, which are common in macro-panel datasets due to 

globalization, regional spillovers, and economic integration. Ignoring these features can lead 

to biased and inconsistent estimates. Therefore, before applying any panel econometric 

models, it is important to conduct diagnostic tests to ensure the validity of underlying 

assumptions. The study begins with three cross-sectional dependence (CD) tests namely the 

Breusch-Pagan LM test, Pesaran Scaled LM test, and the Pesaran CD test. These tests help 

detect the presence of cross-sectional correlations among panel units. In addition, the Pesaran 

and Yamagata (2008) slope homogeneity test is employed to assess whether the slope 

coefficients are consistent across cross-sections. These preliminary tests ensure that the panel 

estimation methods used subsequently are appropriate and robust. Following the confirmation 

of CD and heterogeneity, the study applies second-generation panel unit root tests to determine 

the order of integration of the variables. Traditional unit root tests may be invalid under cross-

sectional dependence; hence, the study utilizes the Cross-sectional Augmented Dickey–Fuller 

(CADF) and Cross-sectional Im, Pesaran, and Shin (CIPS) tests. These methods are 
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specifically designed to account for cross-sectional interdependence and are therefore more 

reliable for determining stationarity in a panel context. Establishing the stationarity of the 

variables is crucial for avoiding spurious regression results and for selecting the appropriate 

model for further analysis. 

After confirming the order of integration, the next step involves testing for long-run 

relationships among the variables. To this end, the study employs the Westerlund (2007) panel 

cointegration test, which is error correction-based and robust to both cross-sectional 

dependence and heterogeneity. Unlike first-generation cointegration tests, the Westerlund test 

does not assume a common autoregressive parameter across the panel and provides both group 

and panel test statistics. The detection of cointegration validates the existence of a stable long-

term relationship among the study variables, despite short-term fluctuations. For the estimation 

of both short-run and long-run relationships in the presence of CD and heterogeneity, the study 

adopts the Cross-Sectional Augmented Autoregressive Distributed Lag (CS-ARDL) model. 

This model is an extension of the conventional ARDL framework, incorporating cross-

sectional averages to correct for cross-sectional dependence and to handle endogeneity. The 

CS-ARDL model is particularly suitable for panels with mixed integration orders (I(0) and 

I(1)) and heterogeneous dynamics, offering efficient and consistent estimates even in complex 

panel structures. 

To reinforce the robustness of the results, the study further applies the Augmented Mean Group 

(AMG) and Common Correlated Mean Group (CC-MG) estimators. These estimators are 

designed to accommodate heterogeneity and cross-sectional dependence by allowing for 

individual-specific long-run relationships and by incorporating common factors. The AMG 

estimator accounts for unobserved common factors through a dynamic process, while the CC-

MG estimator allows for cross-sectional correlation by using cross-sectional averages. 

Comparing the CS-ARDL results with those from AMG and CC-MG provides a robustness 

check, ensuring that the estimated long-run relationships are not sensitive to model 

specification. This multi-model approach increases the reliability and credibility of the 

empirical findings 

3.4.1 Cross-sectional dependency and Slope Homogeneity Test 

Before applying panel econometric models, it is crucial to test for cross-sectional dependence 

(CD) and slope homogeneity to ensure accurate estimations. Due to factors like economic 

integration, globalization, and spillover effects, panel data often exhibit cross-sectional 

dependence (Adebayo et al., 2022; Dong et al., 2018). Ignoring CD and slope heterogeneity 

can lead to biased and inefficient estimates (Talib et al., 2022; Sampene et al., 2022). To 

address this, the study employs three CD tests: the Breusch-Pagan LM test (Breusch & Pagan, 

1980), Pesaran Scaled LM test, and Pesaran CD test (Pesaran, 2004). Additionally, the Pesaran 

and Yamagata (2008) slope homogeneity test is used to verify whether slope coefficients are 

consistent across cross-sections. The Breusch-Pagan LM test detects heteroscedasticity and 

cross-sectional dependence by analyzing residuals from panel regression models. If residuals 

are correlated across units, CD is present (Breusch & Pagan, 1980). The Pesaran CD test 

examines contemporaneous correlation among error terms, where the null hypothesis (H₀) 
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assumes no CD (Pesaran, 2004). The Pesaran Scaled LM test further strengthens CD detection, 

particularly in larger panels (Pesaran, 2021). For slope homogeneity, the Pesaran and 

Yamagata (2008) test evaluates whether regression slopes are uniform across groups (H₀: 

homogeneity) or vary (Hₐ: heterogeneity). Failing to account for slope differences can distort 

model results (Talib et al., 2022). These tests ensure robustness before proceeding with further 

panel data analysis. 

3.4.2 Second Generation Panel Unit root test  

Determining the order of integration of each variable is essential for selecting appropriate 

econometric techniques (Akam et al., 2021). This study employs second-generation panel unit 

root tests specifically the Cross-sectional Augmented Dickey–Fuller (CADF) and the Cross-

sectional Im, Pesaran, and Shin (CIPS) tests to evaluate the stationarity of variables. These 

tests are well-suited for panel data with cross-sectional dependence, as they account for 

interdependencies across countries within the same time period and help avoid spurious 

regression results. By addressing cross-sectional dependence and series heterogeneity, the 

CADF and CIPS tests enhance the robustness and reliability of the analysis (Sampene et al., 

2022; Shen & Yue, 2023). The mathematical formulation of the CADF test is provided in the 

equation below:  

 1 1

1

N

it it it it it it j it

j

x T x      



        (6) 

Where xit represents the variables under study, Δ denotes the difference in the variables, and 

μit represents the white error term. 

The equation for the CIPS test is specified as: 

 
, 1 , 1 , 1

0 0

p p

it it i t it i t it i t it

i i

W Z W W     

 

         (7) 

The mathematical expression for the CIPS test statistics is given by: 

  
1

1
,

N

i

i

CIPS N T
N




   (8) 

Null Hypothesis (H₀): All series contain a unit root, i.e., αᵢ = 0 for all i. Alternative Hypothesis 

(H₁): Some series are stationary, i.e., αᵢ < 0 for i = 1, 2, ..., N₁, and αᵢ = 0 for i = N₁ + 1, ..., N...., 

N. 

3.4.3 Second Generation Panel cointegration test (Westerlund, 2007)  

After confirming the stationarity of the variables, the next step in panel data analysis is to 

assess the existence of a long-run cointegration relationship among the series (Yağlikara, 

2022). To address issues of cross-sectional dependence and heterogeneity, this study applied a 

second-generation panel cointegration test—specifically, the error correction-based 
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Westerlund (2007) approach. This method is well-suited for handling cross-sectional 

dependence and provides robust and reliable results regarding long-term equilibrium 

relationships in panel datasets (Nathaniel et al., 2021; Neagu & Neagu, 2022). The Westerlund 

test evaluates whether error-correction exists in the panel, with the null hypothesis (H₀) stating 

that no cointegration is present among the variables. The presence of cointegration suggests 

that despite short-term fluctuations, the variables share a stable long-run relationship. This 

approach has been widely employed in recent empirical studies for its reliability in 

heterogeneous panels (see Adebayo et al., 2022; Akam et al., 2021; Jian et al., 2022; Nathaniel 

et al., 2021; Sampene et al., 2022; Yağlikara, 2022; Zafar et al., 2019). The mathematical 

specification of the Westerlund (2007) cointegration model is given as: 
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The series trend is represented by dt = (1, t) in this case, and the constant term for all nation 

series is shown by the elasticity estimates ψi = (ψ1 and ψ2). All cross-sectional dependencies 

and the study period are denoted by the letters i and t, respectively. The test statistics in the 

two categories of this approach have the following mathematical expressions: 
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The mathematical estimation for the statistics in the panel cointegration approach is expressed 

as: 
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In this case, the abbreviations for the group mean statistics (Gt and Ga) and the panel statistics 

(Pt and Pa) correspond to their respective sets. The transition adjustment speed from short-

term to long-term equilibrium is indicated by the word η_i^'. It is expected that the 

corresponding test statistics will be "null," or unrelated to the model variables, and that "there 

are cointegrating relationships," as the alternative hypothesis. 

3.4.4 Cross-sectional Augmented Autoregressive Distributed Lag (CS-ARDL)  

The Cross-Sectional Autoregressive Distributed Lag (CS-ARDL) model has gained 

prominence in empirical research as an effective method for panel data analysis, particularly 

due to its ability to handle cross-sectional dependence, heterogeneity, and different integration 
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orders (Adebayo & Rjoub, 2021; Ahmad et al., 2021; Sampene et al., 2022). This model 

extends the conventional ARDL framework by incorporating the cross-sectional averages of 

both the dependent and independent variables, thereby mitigating cross-sectional dependence. 

The CS-ARDL model can be viewed as an ARDL version of the Dynamic Common Correlated 

Effects (DCCE) estimator, originally developed by Pesaran (2006) and later refined by Chudik 

and Pesaran (2015). It is especially robust in dealing with endogeneity and cross-sectional 

correlation, and it allows for the simultaneous estimation of both short-run and long-run 

dynamics in heterogeneous panels (Chudik et al., 2016). Accordingly, this study adopted the 

CS-ARDL model, following the formulations proposed by Chudik and Pesaran (2015), and 

earlier works by Pesaran (2006), Chudik et al. (2013), and Eberhardt and Presbitero (2015). 

The model was used to explore both the short-term and long-term relationships among the 

variables, as presented in Equation 5. 

3.4.5 Robustness Check using Augmented Mean Group (AMG) and Common 

Correlated Mean Group (CCMG) Estimator 

Using Augmented Mean Group (AMG) and Common Correlated Mean Group (CC-MG) 

estimators alongside the CS-ARDL model is a recommended approach to enhance the 

robustness and reliability of panel data analysis, particularly when dealing with heterogeneity 

and cross-sectional dependence as suggested by Eberhardt and Bond (2009). These estimators 

provide a solid foundation for estimating long-term relationships and testing for cointegration 

in panel datasets with multiple entities (Wang & Dong, 2019; Destek & Sarkodie, 2019; 

Osuntuyi & Lean, 2022). As panel data often exhibit heterogeneity across individual entities.  

AMG and CC-MG estimators allow for both heterogeneous and homogeneous long-run 

relationships, thereby capturing the varying dynamics within the panel. (Chudik & Pesaran, 

2015). Eberhardt and Bond (2009) emphasize the importance of addressing cross-sectional 

dependence when dealing with panel data. CC-MG, in particular, takes into account the 

potential correlation or common factors across entities, which helps mitigate issues related to 

cross-sectional dependence. Finally, employing both the CS-ARDL model and AMG/CC-MG 

estimators enables a thorough examination of the data, comparing results from the CS-ARDL 

model with those from the AMG and CC-MG estimators to evaluate the robustness of the 

findings. This comparison aids in determining whether the CS-ARDL model appropriately 

captures long-run relationships in the presence of heterogeneity and cross-sectional 

dependence (Sampene et al., 2022). 

4.0 Results and Discussion 

4.1 Cross-sectional Dependency Test Result 

In panel data analysis, it is imperative to examine the presence of cross-sectional dependence 

(CSD), as it captures the extent to which changes in one cross-sectional unit influence others 

an especially common phenomenon in globally interconnected economic and environmental 

systems. Neglecting CSD may lead to biased estimations and inefficient model specifications. 

To investigate CSD in this study, three widely adopted tests were utilized: the Breusch-Pagan 

LM test, the Pesaran Scaled LM test, and the Pesaran CD test. 
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Table 1:  Cross-sectional Dependency Result 

Variables Breusch-Pagan LM Pesaran Scaled LM Pesaran CD 

lnEF 770.99*** 76.53*** 11.26*** 

lnGDP 850.04*** 84.86*** 18.79*** 

lnURB 2248.17*** 232.24*** 47.37*** 

lnNR 247.40*** 21.33*** 9.09*** 

lnREC 1188.30*** 120.51*** 28.05*** 

lnNREC 1059.79*** 106.97*** 27.06*** 

***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively. 

Source: Authors’ Estimation 

The results clearly indicate significant cross-sectional dependence across all variables given 

the significances of all the tests at 1% level, confirming the necessity of utilizing econometric 

techniques that accommodate cross-sectional dependence. 

4.2 Slope Homogeneity Test Result 

To evaluate whether the slope coefficients are consistent across cross-sectional units, the 

Pesaran and Yamagata (2008) slope homogeneity test was employed. This test determines 

whether the relationships between the variables are homogeneous or heterogeneous across 

countries.  

Table 2: Slope Homogeneity Result  

Test Statistic Value p-value 

Delta 23.93*** 0.000 

Delta-Adjusted 26.17*** 0.000 

***, **, and * represent the significance levels at 1%, 5%, and 10%, respectively.                    

Authors’ estimation 

Both the Delta and Adjusted Delta statistics are highly significant at the 1% level, rejecting the 

null hypothesis of slope homogeneity. This confirms that the relationships among the variables 

vary significantly across countries, reinforcing the need for models that accommodate 

heterogeneity in the slope coefficients  

4.3 Second Generation Panel Unit-root Test Result 

Given the confirmed presence of cross-sectional dependence and heterogeneity, first-

generation unit root tests would be inappropriate for this analysis. Therefore, the study adopts 

second-generation panel unit root tests specifically, the Cross-sectional Augmented Dickey-

Fuller (CADF) and the Cross-sectional Im-Pesaran-Shin (CIPS) tests to assess the stationarity 

of the variables.  
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Table 3: Second Generation Panel Unit-root Test Result 

Variables 
CADF 

(Level) 

CADF (1st 

Diff.) 

CIPS 

(Level) 

CIPS        

(1st Diff.) 

Order of 

Integration 

lnEF -1.78 -5.20*** -2.05 -6.09*** I(1) 

lnGDP -1.69 -4.98*** -1.44 -5.73*** I(1) 

lnURB -2.89*** -1.68*** -2.92*** -2.80*** I(0) 

lnNR -1.93 -5.82*** -2.20 -6.19*** I(1) 

lnREC -2.72*** -4.50*** -3.16*** -5.43*** I(0) 

lnNREC -2.33** -5.06*** -2.66*** -5.30*** I(0) 

***, **, and * represent the significance levels at 1%, 5%, and 10%, respectively.                    

Authors’ estimation 

The results reveal mixed orders of integration among the variables. Specifically, variables such 

as lnEF, lnGDP, and lnNR are non-stationary at levels but become stationary after first 

differencing, indicating integration of order one, I(1). Variables such as lnURB, lnREC, and 

lnNREC are stationary at level, suggesting integration of order zero, I(0). This combination of 

I(0) and I(1) variables justifies the adoption of econometric methods such as the CS-ARDL 

model and the Westerlund (2007) cointegration test, which are robust to mixed integration 

orders, cross-sectional dependence, and slope heterogeneity. 

4.4 Westerlund (2007) Panel Cointegration Test Result 

After confirming the presence of stationarity in research variables, the next stage in panel data 

analysis examines the long-run cointegration of the series under consideration. Given the 

concerns regarding CSD and heterogeneity, we needed second-generation panel cointegration 

tests, which offer precise and trustworthy information on the long-run cointegration 

relationship across variables in various settings. To overcome the earlier issue, the study 

preferred to apply error correction-based cointegration introduced by Westerlund (2007). The 

test provides four statistics (Gt, Ga, Pt, and Pa) each offering different insights into the 

cointegration properties at both the individual and panel levels. 

Table 4: Westerlund (2007) Panel Cointegration Result 

Statistic  Value Z value p value 

Gt  -3.186 *** -1.792 0.007 

Ga  -6.953 *** -3.077 0.000 

Pt  9.761*** -2.088 0.001 

Pa  8.037 *** 1.244 0.003 

***, **, and * represent the significance levels at 1%, 5%, and 10%, respectively.                     

Authors’ estimation 

From table 4, the Westerlund (2007) cointegration test was used to examine long-run 

relationships among the variables. The results provided strong evidence of cointegration at 

both the individual and panel levels, as all four statistics (Gt, Ga, Pt, and Pa) were significant 

at the 1% level. This confirms the presence of a long-run equilibrium relationship among the 

variables, justifying the use of cointegration-based techniques like the CS-ARDL model for 
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analyzing long-run dynamics. The findings validate the importance of accounting for cross-

sectional dependence and heterogeneity in the analysis. 

4.5 The CS-ARDL Estimation 

After confirming the existence of a cointegration relationship between the heterogeneity and 

cross sectional dependent variables with mixture of integration among the variables, we can 

continue to estimate the long run and short-run relationships using the Cross-Sectional 

Augmented Autoregressive Distributed Lag (CS-ARDL). Table 5 presents the CS-ARDL 

estimation result. 

Table 5: CS–ARDL Estimation Result  

Variables Slope Coefficient Standard  error Z-Statistics 

Long-run 

lnGDP 2.490147*** 0.144996 17.17385 

lnGDP2 -0.715597*** 0.039938 -17.91786 

lnGDP3 0.054669*** 0.002727 20.04451 

lnURB 0.127875** 0.053373 2.395887 

lnNR 0.121505*** 0.027218 4.464197 

lnREC -0.077192*** 0.150978 -0.511281 

lnNREC 0.004177* 0.066852 0.062484 

Short-run 

ΔlnGDP 18.55190***    4.841074 3.832187 

ΔlnGDP2 -2.949378*** 0.693453 -4.253178 

ΔlnGDP3 0.157630*** 0.032783 4.808325 

ΔlnURB 0.989352*** 1.667182 0.593428 

ΔlnNR 0.002588*** 0.015443 0.167610 

ΔlnREC 0.007125*** 0.320554 0.022229 

ΔlnNREC 0.055672*** 0.147383 0.377736 

ΔECT (−1) -0.275187*** 0.063646 -4.323709 

***, **, and * show statistical significance at 1, 5, and 10%, respectively.                              

Authors’ estimation 

CS-ARDL estimation results, presented in Table 5. In the long-run coefficients, several 

variables show statistically significant relationships with EF. GDP has a positive and highly 

significant effect (2.49, p < 0.01), indicating that a 1% increase in GDP leads to a 2.49% 

increase in EF, strongly confirming that economic growth intensifies environmental pressure 

in the long term. The GDP² term is negative and significant (-0.72, p < 0.01), while GDP³ is 

positive and significant (0.0547, p < 0.01). This non-linear pattern supports the existence of an 

N-shaped EKC, suggesting that EF initially rises with income growth, then declines, but may 

rise again at higher income levels. Additionally, natural resource deplation (NR) also has a 

positive and significant coefficient (0.121505, p < 0.01), meaning a 1% increase in NR leads 

to a 0.122% increase in EF, highlighting the environmental cost of natural resource 

exploitation. Urbanization (URB) shows a positive and significant coefficient (0.127875, p < 

0.05), implying that a 1% increase in urbanization leads to a 0.128% increase in EF, indicating 
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that urban expansion contributes to environmental stress. On the other hand, renewable energy 

consumption (REC) has a negative and significant coefficient (-0.077192, p < 0.01), suggesting 

that a 1% increase in REC reduces EF by 0.077%, underscoring the role of renewable energy 

in mitigating environmental degradation. Lastly, non-renewable energy consumption (NREC) 

has a positive and marginally significant coefficient (0.004177, p < 0.10), indicating that a 1% 

increase in NREC leads to a 0.004% increase in EF, showing that reliance on non-renewable 

energy sources worsens environmental conditions.  

In the short-run coefficients, the results reveal stronger immediate impacts of some variables 

on EF compared to their long-run effects. The immediate impact of GDP is even stronger: a 

1% increase in GDP raises EF by 18.55% (p < 0.01). This impact is partially moderated by the 

negative GDP² (-2.95) and positive GDP³ (0.16) terms, which are both significant and indicate 

a short-run non-linear relationship consistent with the long-run EKC shape. Also, Natural 

resource utilization (NR) has a positive and significant coefficient (0.002588, p < 0.01), but its 

impact is smaller in the short run compared to the long run. Urbanization (URB) shows a much 

stronger immediate impact, with a coefficient of 0.989352 (p < 0.01), suggesting that a 1% 

increase in urbanization leads to a 0.989% increase in EF in the short run.  Additionally, Non-

renewable energy consumption (NREC) has a positive and significant coefficient (0.055672, 

p < 0.01), indicating a 1% increase in NREC leads to a 0.056% increase in EF in the short run, 

which is stronger than its long-run effect. Interestingly, renewable energy consumption (REC) 

has a small positive and significant coefficient (0.007125, p < 0.01) in the short run, contrasting 

with its long-run mitigating effect. This could be due to transitional inefficiencies in renewable 

energy adoption. The error correction term (ECT) has a negative and significant coefficient (-

0.275187, p < 0.01), indicating that 27.5% of the disequilibrium in EF is corrected annually, 

confirming the existence of a long-run equilibrium relationship with a moderate adjustment 

speed. 

The findings confirm an N-shaped Environmental Kuznets Curve (EKC) for ecological 

footprint in some selected Sub-Saharan African countries aligning with recent empirical 

studies that challenge the traditional inverted-U hypothesis. The positive GDP, negative GDP², 

and positive GDP³ coefficients suggest that while economic growth initially worsens 

environmental degradation, moderate income levels may temporarily alleviate pressure before 

higher growth reignites ecological stress. This result is consistent with Fakher et al., (2023), 

who found an N-shaped EKC for ecological footprints in OPEC countries, emphasizing that 

non-renewable energy exacerbates environmental damage while renewable energy mitigates 

it. Similarly, Allard et al., (2018) demonstrated an N-shaped EKC for CO₂ emissions across 74 

countries, reinforcing the role of institutional quality and renewable energy in shaping this 

relationship. The findings also resonate with Wang et al., (2024), who showed that including 

additional factors like ICT and institutional quality strengthens the N-shaped EKC for carbon 

emissions globally. However, the results contrast with studies such as Aşıcı and Acar (2018), 

who found no EKC in 87 countries, and Aydina et al., (2019), who rejected the EKC hypothesis 

in the EU. These discrepancies highlight the context-dependent nature of the EKC, as noted by 

Sarkodie (2021). The N-shaped pattern in the study suggests that without proactive policy 

interventions such as renewable energy adoption and technological innovation economic 
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growth in Sub-Saharan Africa may lead to recurring environmental degradation, a concern also 

raised by Muratoğlu et al., (2024) in their sectoral analysis of OECD countries. 

Urbanization was also found to increase EF, supporting previous studies by Salim (2017) and 

Uddin et al. (2017), which identified urbanization as a driver of environmental degradation. 

The findings align with Kurniawan and Managi (2018) and Gupta et al. (2022), who linked 

urban expansion to increased resource consumption and pollution. However, Rafque et al. 

(2021) suggested that investments in human capital and green urban planning could offset 

some of the negative effects of urbanization on EF. Similarly, Bargaoui (2021) argued that the 

environmental impact of urbanization depends on factors such as energy efficiency and 

infrastructure development, suggesting that well-planned urbanization can mitigate 

environmental stress. Furthermore, while Gupta et al. (2022) focused on urbanization’s role in 

increasing PM2.5 pollution, this study specifically examined its impact on EF. Natural resource 

depletion was another key determinant found to have a strong positive impact on EF, 

emphasizing the environmental costs of resource exploitation. This result is consistent with 

findings from Sampene et al. (2022) and Radmehr et al. (2022), who identified resource 

depletion as a major environmental stressor. Sharif et al. (2020) similarly found that excessive 

reliance on natural resources significantly affects EF in developing economies. However, 

studies such as Asıcı and Acar (2016) in more developed regions have shown that improved 

resource management and technological advancements can decouple resource use from 

environmental degradation, a trend that is not yet evident in Sub-Saharan Africa. Oghenekaro 

and Meshack (2021) focused on carbon emissions rather than EF, missing the broader 

environmental implications of resource depletion. 

Energy consumption emerged as a critical factor influencing EF, with renewable energy 

consumption (REC) reducing EF and non-renewable energy consumption (NREC) 

exacerbating it. The findings support Saleem et al. (2019), Saidi and Omri (2020), and Usman 

et al. (2021), who reported that renewable energy plays a crucial role in improving 

environmental sustainability. Similarly, Sowah and Kirikkaleli (2022) and Adebayo and Rjoub 

(2021) found that increased adoption of renewable energy reduces environmental degradation, 

while dependence on fossil fuels worsens it. However, Pata (2021) highlighted the need for 

country-specific renewable energy policies to ensure their effectiveness. Additionally, studies 

by Inglesi-Lotz and Dogan (2018) and Javed et al. (2023) provided further evidence that 

renewable energy reduces CO2 emissions and EF, particularly in Sub-Saharan Africa and Italy. 

On the other hand, the significant increase in EF due to non-renewable energy consumption 

aligns with findings by Awodumi and Adewuyi (2020) and Hanif (2018), who demonstrated 

that fossil fuel dependence intensifies environmental degradation in African countries. 

4.6 Robustness Check using AMG and CCMG 

The table 6 presents the results of the Augmented Mean Group (AMG) and Common 

Correlated Effects Mean Group (CCEMG) estimators, which are used to check the robustness 

of the long-run relationships between the Ecological Footprint and the explanatory variables. 

Both methods account for cross-sectional dependence and heterogeneity in panel data, 

ensuring reliable and consistent estimates. 
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Table 6: AMG and CCEMG Result 

                                AMG                  CCEMG 

Variables Coefficient Std. Err.     Z Stat. Coefficient Std. Err Z Stat. 

lnGDP 29.4340*** 3.5683 8.25 22.3873*** 3.6311   6.17 

lnGDP2 -4.5051*** 0.5029 -8.96 -3.5020***   0.5118   -6.84    

lnGDP3 0.2306*** 0.0234 9.84 0.1836*** 0.0238    7.70    

lnURB 0.2808988***    0.092391    3.04    1.617271***    0.50614       3.20   

lnNR 0.0333776***    0.010431  3.24    0.0275349*** 0.006929     3.97     

lnREC -0.1794109**    0.082433       2.17  -0.6227109**   0.275037     -2.26     

lnNREC 0.8139752***    0.265474        3.07    2.608174***   1.288798     2.02     

Wald chi2(5)      =      39.48*** R-squared (MG) =     0.91 

F Statistics          =    1.68***                     

CD Statistic         =  -3.61***       

***, **, and * represent the significance levels at 1%, 5%, and 10%, respectively. 

Authors’ estimation 

Robustness checks using the AMG and CCEMG estimators validated the CS-ARDL results. 

The findings underscore the importance of accounting for cross-sectional dependence and 

heterogeneity in panel data analysis. From table 6, the AMG results indicate that an increase 

in GDP substantially increases EF in the long run with coefficient for GDP is 29.4340 (p < 

0.01). The squared GDP term (GDP²) has a significant negative coefficient of -4.5051(p < 

0.01), while the cubed term (GDP³) is significantly positive at 0.2306 (p < 0.01). Together, 

these signs indicate an N-shaped Environmental Kuznets Curve (EKC) at 1% significant level, 

suggesting that while environmental degradation initially increases with income, it may decline 

at middle income levels and rise again at higher income levels supporting the findings of de 

Bruyn et al., (1998). Urbanization also has a significant positive effect, with a coefficient of 

0.281 (p < 0.01), implying that urban expansion exacerbates environmental stress. Similarly, 

natural resource utilization is positively associated with EF, as a 1% increase in NR leads to a 

0.033% increase in EF (p < 0.01), highlighting the environmental costs of resource 

exploitation. Renewable energy consumption, on the other hand, has a negative and significant 

impact on EF, with a coefficient of -0.179 (p < 0.05), indicating that increased reliance on 

renewable energy helps mitigate environmental degradation. Non-renewable energy 

consumption (NREC) has the strongest positive effect on EF, with a coefficient of 0.814 (p < 

0.01), emphasizing the environmental consequences of fossil fuel dependency. The Wald chi-

square statistic (χ² = 39.48, p < 0.01) indicates that the overall model is statistically significant, 

confirming that the independent variables collectively explain variations in ecological 

footprint. 

 

The CCEMG results largely align with those of the AMG model but with some variations in 

magnitude. The coefficient for GDP remains positive and significant at 22.3873 (Z-statistic: 

6.17), while GDP² is negative and significant (-3.5020; Z-statistic: -6.84), and GDP³ remains 

positive and significant (0.1836; Z-statistic: 7.70). This reaffirms the N-shaped EKC, 

highlighting the complex relationship between income growth and environmental degradation. 

Urbanization exerts an even stronger effect on EF in the CCEMG model, with a coefficient of 
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1.617 (p < 0.01), suggesting that urban expansion has a more pronounced environmental 

impact when accounting for cross-sectional dependence. The effect of NR remains positive 

and significant (0.028, p < 0.01), further emphasizing the environmental costs of resource 

exploitation. Renewable energy consumption continues to exhibit a negative and significant 

effect on EF, with a stronger impact (-0.623, p < 0.05) compared to the AMG results, 

underscoring the role of renewable energy in reducing ecological pressure. Also, Non-

renewable energy consumption has the strongest positive effect on EF, with a coefficient of 

(2.608174 p < 0.05) showing that reliance on non-renewable energy sources worsens 

environmental conditions. The R-squared value of 0.91 indicates that the model explains 91% 

of the variation in EF, demonstrating a strong fit. The F-statistic (1.68, p = 0.000) confirms the 

overall significance of the model, while the significant CD statistic (-3.61, p = 0.0003) 

indicates the presence of cross-sectional dependence, which the CCEMG estimator effectively 

accounts for.  

5.0 Conclusion and policy recommendations 

5.1 Conclusion 

The paper examined the dynamic effects of economic growth, natural resource depletion, 

urbanization, and energy consumption on ecological footprint (EF) in 10 Sub-Saharan African 

countries from 1970 to 2023. The findings reveal that GDP, natural resource depletion, and 

urbanization significantly increase EF, reinforcing environmental degradation.  

The results demonstrate that economic growth exerts a significant and complex non-linear 

influence on ecological footprint, confirming the existence of an N-shaped Environmental 

Kuznets Curve (EKC). While renewable energy consumption (REC) helps mitigate EF, its 

impact remains limited in the short run due to transitional inefficiencies. Non-renewable 

energy consumption (NREC) further worsens environmental degradation. The error correction 

term (ECT) indicates a moderate adjustment speed (27.5%) toward long-run equilibrium. 

Robustness checks with alternative estimators confirm the reliability of these findings. In line 

with the empirical evidence, the paper concluded by confirming the current growth trajectories, 

driven by natural resource exploitation, rapid urbanization, and reliance on non-renewable 

energy, are exacerbating ecological degradation. While renewable energy offers a promising 

pathway to mitigation, its impact remains constrained by structural and transitional barriers. 

Lastly the paper support the existence of non-linear pattern of an N-shaped EKC, suggesting 

that EF initially rises with income growth, then declines, but may rise again at higher income 

levels 

5.2 Recommendation 

Policymakers should recognize the non-linear Environmental Kuznets Curve (EKC) patterns 

by promoting green growth strategies that decouple economic expansion from environmental 

degradation. This can be achieved by incentivizing businesses to adopt green technologies 

through tax rebates and subsidies, investing in cleaner industries and sustainable agriculture, 

and supporting circular economy initiatives such as recycling, reuse, and waste reduction. 

Also, governments should promote renewable energy adoption by investing in and 
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incentivizing renewable energy consumption (REC) to reduce reliance on non-renewable 

energy consumption (NREC) and mitigate environmental degradation. Implementing 

sustainable urban planning policies, including green infrastructure development, improved 

waste management, and energy-efficient urbanization, is crucial for minimizing the ecological 

footprint. Additionally, enforcing strict environmental regulations can help curb excessive 

natural resource exploitation and reduce industrial pollution. Integrating green economic 

policies into national development plans will ensure long-term sustainability by balancing 

economic growth with environmental preservation. Lastly, public awareness campaigns should 

be conducted to educate citizens and industries on sustainable practices, fostering 

environmentally friendly behavior and reducing ecological stress. 
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